www.nhft.net > 求导 大全

求导 大全

1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√...

2个基本初等函数的导数以及它们的推导过程,初等函数的导数可由之推算

这是公示c'=0(c为常数) (x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1/(xlna),a>0且 a≠1 (lnx)'=1/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (arcsinx)'=1/√(...

偏导数是一个整体记号,不能看成一个微分的商。分母与分子是一个整体,不可以分开,与dy/dx不太一样。 其实,偏导数中的∂,意义还是“无限小增量”; ∂u/∂x还是微商,跟dy/dx的微商是一样的意义。 ∂u/∂x与du/dx区别...

(sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccot...

基本求导公式:c'=0(c为常数) (x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1/(xlna),a>0且 a≠1 (lnx)'=1/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (arcsinx)...

书本上有最基本的求导公式,后来的那些不过是加以延伸..........要想学好导数,还是要多做习题..........如果要列举的话,你其实还不如看书本......(c)'=0 (x^u)=ux^(u-1) (sinx)'=cosx (cosx)'=-sinx ( tanx)'=sec^2x (cotx)'=-csc^2x(secx)'=s...

根号相当于1/2次方、、、x^n有公式、、、

1. y=c y'=0 2. y=α^μ y'=μα^(μ-1) 3. y=a^x y'=a^x lna y=e^x y'=e^x 4. y=loga,x y'=loga,e/x y=lnx y'=1/x 5. y=sinx y'=cosx 6. y=cosx y'=-sinx 7. y=tanx y'=(secx)^2=1/(cosx)^2 8. y=cotx y'=-(cscx)^2=-1/(sinx)^2 9. y=arcsinx y'=1/√...

只要公式?

网站地图

All rights reserved Powered by www.nhft.net

copyright ©right 2010-2021。
www.nhft.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com